Brine/Concentrate Management
Technologies and Trends

Troy Walker – Hazen and Sawyer
Acknowledgements

Kevin Alexander
Hazen and Sawyer

Buddy Boysen
Hazen and Sawyer

Rick Stover
Gradiant
Agenda

- Introduction
- Current State of Market
- Concentrate Minimization
- Concentrate Disposal
- Salt Recovery
- Questions
Population Growth

Alternative Supplies Required

Fresh Water Reduction

Drought

Challenging water quality
Considerations for Sustainable Water

Simple Costs
- Traditional Recycled
- Imported
- Conservation
- Groundwater
- Advanced Reuse
- High Recovery
- Seawater
- Urban Runoff

Sustainable
- Conservation
- Traditional Recycled
- Groundwater
- Urban Runoff
- Advanced Reuse
- High Recovery
- Seawater
- Imported
Desalination (Salt Removal) Technologies

- Groundwater
- Advanced Reuse
- High Recovery
- Seawater
Solid Growth in Desalination Application
Salt Removal Technologies

Reverse Osmosis

Electrodialysis

Electrodialysis Reversal
Electrodialysis

Movement of ions in the electrodialysis process
What Do Technologies Have in Common?

• Low TDS (total dissolved solids) Product Water
• 75-85% of Flow
• Concentrated Saline Waste Stream
• 15-25% of Flow is concentrate waste
Why so much concentrate?

Scaling

Main culprits:
- Alkaline scales: CaCO$_3$ / Mg(OH)$_2$
- Non-alkaline: CaSO$_4$
- Sparingly soluble: BaSO$_4$/SrSO$_4$/CaF$_2$
- Silica (gel & colloidal)
- Ca$_3$(PO$_4$)$_2$ – (Water Reuse)

Control techniques:
- Antiscalant (threshold inhibitor)
- pH Control (usually acid dosing)
- Limit maximum recovery
For Inland Systems Disposal Can be Highest Cost

Inland desalination operating cost per 1000 gallons of RO permeate - RO with brine disposal to sewer at average US commercial sewage tariffs.
What do we do with Concentrate (Brine) in the USA?

- Zero Liquid Discharge, 1
- Evaporation Ponds, 3
- Deep Well Injection, 9
- Surface Discharge, 45
- Sewer Discharge, 42

US Concentrate Disposal

Mickley, 2003
Costs of Increasing Recovery

Normal
Up to 85%

Concentrate Minimization
Up to 98%

ZLD
No Brine

SYSTEM COMPLEXITY

Operating Cost

Capital Cost

Reverse Osmosis
EDR

CCD, Batch RO
Membrane Distillation
Controlled Scale RO,
Interstage Lime,
Many Others

Evaporation
Thermal – Brine
Concentrators and
Crystallizers
What Does Increasing Recovery Cost?

- Brine Flow Decreases
 - 1.2 MGD
 - 0.8 MGD
 - 0.4 MGD
 - 0.0 MGD

- Salt Concentration Factor
- Water Recovery
- Cost $
Minimizing the Concentrate

Strategies to Increase Recovery
Controlled Scaling RO

- Achieves 93% water Recovery – WRD Vander Lans, CA
- Scale is controlled by permeate flushing
- Dispose of membranes every 2 years
Hybrid Membrane NF

- Achieved 98% Recovery – Signal Hill, CA
- Scale is controlled by passing salts in stage 1,2
- Stage 3 concentrates silica and CaCO3
Signal Hill – Hybrid Membrane Approach
Closed Circuit Desalination (CCD)

- Achieving 96-97% Recovery on WW Effluent Conc.
- Pilots at Gila Bend, AZ, Padre Dam MWD
Interstage Lime

- Achieved 95% water Recovery – Phoenix Pilot
- Solids Contact Clarifier
- Silica Removal was better than predicted
Interstage Pellet Lime

- Crystalactor – Interstage Lime Pellet
- Installed at Chino Desalter Authority – Chino, CA
- $50M for 1.7 MGD of Treatment
Zero Discharge Desalination (ZDD)

- Veolia/Kruger
- Dr. Tom Davis
 UTEP

Capelle et al, AMTA 2013
Vibratory Shear Enhanced Process (V-SEP)

- Use proprietary vibration to reduce boundary layer
- Tested by USBOR in Tucson
Disc Tube Reverse Osmosis

Used currently in landfill leachate

Diagram of Disc Tube Reverse Osmosis system:
- Well Pump
- Cartridge Filter
- Reverse Osmosis
- Feed Pump
- Concentrate
- DTRO

Crosstek
Membrane Distillation

- Use Temperature Differential
Humidification - Dehumidification

Gradiant – Carrier Gas Extraction
High Efficiency RO HERO™ by Aquatech

- Remove Cations first, then Anions
- Caustic to keep silica in solution
- 98% or greater

HERO is a registered trademark of Debasish Mukhopadhyay
OPUS™ - Kruger Process
Forward Osmosis

Pendergast, 2018 (Oasys) mostly Oil and Gas
Concentrate Disposal
Concentrate Pipelines

- Menifee/Perris I Desalter
- Perris II Desalter
- SJVRWRP IPR
Deep Well Injection

- El Paso has injection for K. Bailey Hutchison RO Plant
- 22 miles from plant
- 3 mgd
- 3,800 ft deep
- $19 M construction (20%)
Pond Evaporation

- 1-2 inches per day in Arizona
- Intel – Chandler since 1996
Semi Enhanced Evaporation

- 6 inches per day in Arizona
- Maintained by Equipment Vendors
Fully Enhanced Evaporation

- Up to 30 times evapotranspiration
Wind Aided Evaporation

- Up to 20 time Eto
- Considering at Intel in Arizona
Concentrator Technologies

- Single Effect Evaporators/Multi-Effect Evaporators
- Thermal Vapor Recompression
- Mechanical Vapor Recompression
Typical Costs

![Bar chart showing typical costs for different processes. The chart compares Brine Concentration, DTRO, VSEP, RO with Brine Precip, High Recovery RO, CCD, SWRO, FO, HDH, and Membrane Distill. The y-axis represents the total cost per 1000 gallons, ranging from 0 to 50, and the x-axis lists the processes.]
Recovery of Products
Potentially Recoverable Salts

<table>
<thead>
<tr>
<th>Salt</th>
<th>Price</th>
<th>Basis (Year)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Sulfate (gypsum)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Salt</td>
<td>60</td>
<td>$/ton (2011)</td>
<td>Kostick, 2012c</td>
</tr>
<tr>
<td>Brine</td>
<td>8</td>
<td>$/ton (2011)</td>
<td>Kostick, 2012c</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capelle (UTEP) et al 2013.
Purity Requirements for Sale

<table>
<thead>
<tr>
<th>Salt</th>
<th>Purity Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Carbonate</td>
<td>• 96% as CaCO₃</td>
</tr>
<tr>
<td></td>
<td>• Less than 0.5% by weight of SO₄, Cl, and other constituents</td>
</tr>
<tr>
<td>Calcium Sulfate (gypsum)</td>
<td>• 75-85% as CaSO₄ for use in cement</td>
</tr>
<tr>
<td></td>
<td>• ≤ 0.3% by weight of Na₂O, K₂O, and Mg₂O for use in wallboard</td>
</tr>
<tr>
<td></td>
<td>• ≤ 100 ppm Cl</td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td>99% by weight as Na₂SO₄ for use in detergent</td>
</tr>
<tr>
<td>Sodium Carbonate</td>
<td>• 99% pure for use in glass industry</td>
</tr>
<tr>
<td></td>
<td>• No Cl or Fe</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>• 96% pure for use in rock salt</td>
</tr>
<tr>
<td></td>
<td>• No SO₄, Ca, or Mg for use in chlor-alkali process</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>• ASTM Standard D98</td>
</tr>
<tr>
<td></td>
<td>• Other limits are specific to the user</td>
</tr>
</tbody>
</table>
Enviro Water Minerals – El Paso

- Add in three more from memo.

Exisitng EPWU Kay Bailey Hutchison Desalination Plant

- Brackish Wells
- BWRO Desalination
- BWRO Brine 13,000 mg/l dissolved salts
- 85% recovery
- Disinfection, Blending and Distribution
- Chlorine
- Potable Water
- 99% well water recovery with full brine flow to EWM
- Waste Brine to Disposal Wells

Enviro Water Minerals El Paso Plant

- Heater
- Nano-Filtration
- Degasifier
- Electrodialysis
- Softener
- 125% flow
- 80% recovery
- Air+CO2
- 100 F
- 90% recovery
- Desalinated Water 91% Recovery (based on 3m3 of seawater)
- 700 mg/l dissolved salts
- HCl
- Caustic
- Sodium Chloride Brine 10 Mineral Production
- Magnesium Chloride, Calcium Chloride Brine 10 Mineral Production

* NSF 60 certified acid provides additional product water and silica desaturation

Images:

- Agricultural Gypsum
- Caustic Solution
- Milk of Magnesia
- Potash Liquid Fertilizer
- Bromide Rich Brine
- High-Purity Salt

Courtesy Enviro Water Minerals
Significant Facility

Enviro Water Minerals

Brackish Well Water

Concentrate

Potable Quality Water

El Paso Water Utilities
KBH Desal Plant

Courtesy Enviro Water Minerals
Questions?

Troy Walker

Water Reuse Practice Leader | Hazen and Sawyer
1400 E. Southern Avenue, Suite 340, Tempe, AZ 85282
480-436-7959 (main) | 480 340-3270 (cell)
| 480 648-2629 (fax)
twalker@hazenandsawyer.com