Southerly WWTC Valve Selection and Flexible Aeration Control for Energy Efficiency

August 2018

Harry Shaposka, PE 216.881.6600
Brian Flanagan 216.641.3200
Jeff Ifft, PE 216.606.1316
Matt McElroy, PE 216.606.1317

One Water Conference
Agenda

• NEORSD Overview
• Project Background and Objectives
• Equipment Selection
 • Blowers
 • Air Flow Control Valves
• Process Control
 • Constant Pressure
 • Most Open Valve
 • Flow based Most Open Valve
NEORSD Southerly WWTC

- Two-stage advanced treatment facility
- Serves 500,000 residents of Cleveland, OH and Suburbs
- First Stage Aeration System (FSAS)
 - Reduce carbonaceous biological oxygen demand prior to Second State Aeration System (SSAS)
- Two stages operate in series during wet weather
 - After FSAS capacity reached a portion of primary effluent directed to SSAS (capacity of 400 mgd)
- Although not as large as SSAS, FSAS accounts for over $500K per year in electrical consumption

Goal: Improve the mechanical reliability and efficiency of the unit process with improved automation and energy efficiency of the process air blowers.
Southerly WWTC Plant Upgrades

2012
ADF ~ 132 mgd
Peak ~ 175 mgd

2010 - 2015
Upgrade Primary Settling Unit Process

2016-2019 Upgrade
Second Stage Lift Station

2017 - 2021
Upgrade Second Stage Activated Sludge System

2012 - 2018
Upgrade and increase
First Stage Activated Sludge System
Peak ~ 215 mgd process
First Stage Aeration Tanks Equipment Overview

- Channel Blowers
- Process Air Compressors
- Unit Substation
- Control Room
- Air Header Pressure and Flow
- RAS Control Valve (Typ)
- Sluice Gates (Typ)
- Air Flow Meter and Control Valves (Typ)
- DO Probe (Typ)
Southerly WWTC Energy Demand

Over $500,000/year

Plant Total
SSAS Blowers
FSAS Blowers

32-67%
10-22%
Project Objectives

- Provide greater operational flexibility and tighter control
- Consider regulatory changes
- Improve energy efficiency

Equipment selection and refined DO control has estimated savings of $150,000/year
Path to Success

Equipment Selection

- Right size the blowers
- Minimize pressure loss in control and delivery
- Ceramic dome diffusers replaced with fine bubble membrane discs

Process Control

- Provide flexible process control to efficiently deliver the right amount of oxygen where and when it is needed
Existing First Stage Process Air Compressor Operating Envelope

Flow Rate (scfm)

- Plug Flow Operation
- Step Feed Operation
- Single Roots in Service
- Two Roots in Service

- 1 PAC in service
- 2 PACs in service
- Limited Turndown
- Excessive Capacity

- Current Annual Average
- Future Annual Average
- Current Maximum Month
- Current Peak Hour
- Future Maximum Month
- Future Peak Hour
- Blower Operating Range
Step 1 // Blower Selection

- Maximize efficiency at normal operating conditions with greater turndown
- Decreased from 1250HP to 900HP blowers
Blower Features

- Constant speed - RVSS
- Capacity Control
- System Master Controller not provided by the Blower Manufacturer
- No automatic start/stop
- Note on Surge

Discharge Diffuser
Inlet Guide Vanes

WEFTEC Presentation Stand at Siemens Factory
Step 2 // Air Flow Control Valves

- Modulating control valve and thermal mass flow meter per pass (4 passes per tank)
- Balancing valve per zone (2 zones per pass)
- Actuator Technology
 - Hydraulic
 - Pneumatic
 - Electric Motor
- Control Valve Selection
Butterfly Valve

Common selection for this application

Lower capital investment compared to other valves

Quick opening (non-linear) performance particularly when at lower pressure drops

Typical range of control 30-70%

Not propriety
Control-Disk

Modified butterfly valve

Disk profile improves linear control range vs. standard butterfly valve

Typical range of control 15 - 70%

Proprietary

Photos: Fisher Control-Disk
Square Diaphragm Control Valve

Proportionally opening aperture improves linear control range vs. standard butterfly valves

Typical range of control 15 - 85%

Proprietary

Photo: Binder Group
Jet Control Valves

Expands linearity of response; nearly the full range of travel (10% open gives 10% flow)

Venturi shape provides some pressure regain

Lower pressure drop compared to other valves

“Bulb” shape straightens flow

Compact installation with flow meter installed at ½ pipe diameter upstream

Flow meter calibrated at factory

Proprietary

Photos: Binder Group
Control Valve Technologies

Chart from the Binder Group, manufacturer of the Jet Control Valve
Selection// The Jet Control Valve Investment

Extended consideration
- Site visit in Germany
- Longer warrantee
- Written spare and repair plan

Pressure regain – very low installed pressure drop

Estimated energy savings
- Assume 7-10 cents/kW*hr
- Assume 80% efficient blower
- Estimates a 0.45 – 0.57 psi decrease in pressure

$12K - $18.5K per year at current loadings

1st installations in the USA
Flow Based Dissolved Oxygen Control

- Cascade Control
- Minimum Flow Set Point

Self Correcting
- Ambient Temperature
- Oxygen Transfer Rates
- Nutrient Loadings
- Forward Flow

Not Self Correcting
- Dirty DO probes
Pressure Control – 3 Automatic Control Modes
Functionality builds upon one another

Control Mode 1: Constant Pressure

Current state of commissioning
Historical trending
Stall the airplane!!! *(scary idea in an aircraft...)*

Optimized in aeration

Control Mode 2:
Most Open Valve (MOV)
advancing * optimization

Control Mode 3:
Flow Based Most Open Valve

Tom Jenkins
Aeration Control System Design
A practical guide to energy and process optimization
Valve Control Network Topology

Network connectivity via Ethernet/IP drove a Rotork Valve Master Station solution with 3rd party protocol converter

2nd Stage Settling will have rack mounted communications to the Valve Master Station via Modbus/TCP
Thank You

it’s about connecting

Presented by:
Harry Shaposka // 216.881.6600
Matt McElroy // 216.606.1817
Brian Flanagan// 216.641.3200
Jeff Ifft // 216.606.1316