Dayton Water Reclamation Facility Downsizes Blowers to Upsize Energy Savings
1. Background Info
 – 2011/2012 Dayton Led Investigation and Findings
 – Consultant Hiring and Technology Evaluation/Selection
 – Project Costs
2. Provide Sulzer Blower Overview
3. Defendability
 – Project Results
 – Where is the energy savings?
 – Outside Factors
4. Lessons Learned and Future Plans
5. Construction Photos (if time remains)
• Investigation of Nitrification Process (2011/2012)
 – Opportunities for Improvement
 – Potential additional improvements?
 – Final Improvement Direction
• Consultant Selection and Technology Evaluation
 – Multistage Centrifugal (Gardner Denver)
 – Oil Bearings (Siemens)
 – Air Bearing Blowers (APG-Neuros)
 – Magnetic Blowers (Sulzer-ABS)
• Project Costs
Investigation of Nitrification Process

Opportunities for Improvement

– Loading Demands Much Lower than Predictions/Design
 o 1988 Projected Flow 72 MGD versus 37 MGD in 2011
 o Projected concentrations of BOD 40-45 mg/l and Ammonia 26 mg/l
 o 2011 concentrations for BOD was the same but Ammonia was 16 mg/l
 o Impact is revealed in the loadings
 • 1988 Projected BOD 27k lbs versus 2011 Actual of 13k lbs
 • 1988 Project Ammonia 16k lbs versus 2011 Actual of 5.3k lbs

– Calculations of air requirements revealed 13,000 SCFM versus current 20,000 SCFM
 • Over aeration leading to biological shearing
 • Energy consumption much higher than necessary

– Additional Issues
 • Existing Blowers exceeded their useful life
 • Cannot meet existing air requirement due to turndown issues (20,000 SCFM and 8 psi)
 • Could not get in the existing blowers proprietary programming (i.e. “Black Box”)
 • New Software exists but expensive
 • Reliability of existing blowers was a concern
Potential additional Improvements?

1. Electrical System Oversized
 - Turblex Blowers 4160V versus new technology 480V
2. Energy Reduction through automation (i.e. tracking DO)
3. Occasional failures of air distribution system
4. Ceramic dome piping has occasional failures
5. Ceramic domes are old technology and manufacturer no longer in business
6. Process Air Compressor #1 not functional → Reliability concerns
7. Air distribution system not configured for new blower technology
Investigation of Nitrification Process (Cont’d)

Final Improvement to put out for Design Services
1. Electrical System Oversizing must be remedied
2. Automation and air flow in 4 of 8 aeration basins
3. Air distribution system reliable and minimal maintenance since 1988
4. Ceramic dome piping repairs were needed but entire system will not be replaced
5. 6,000 new Ceramic domes in stock and are nearly as efficient when in new condition
6. Two (2) Existing Blowers will be replaced with new blowers
7. Air distribution system will be reconfigured for new blower technology
8. Reduction in Energy Costs were estimated to be $370K/Year
 – Reduced air requirements of 20k SCFM versus 13k SCFM required
 – 300 kW reduction by switching to new blower technology (1500 hp versus 600hp)
Hazen and Sawyer was selected as the Design Consultant

- Agreement approved in March of 2013
- Reviewed Dayton Investigation Results
- Confirm Basis of Design
- Evaluate Aeration System Options
 - High speed direct drive via air bearing and magnetic bearing
 - Turblex
 - Hybrid/multi-stage
- Evaluate blower(s) and DO control systems
- Evaluate diffusers and piping
- Evaluate electrical improvements
Consultant Selection and Technology Evaluation

Alternatives Evaluated

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Manufacturer</th>
<th>Design Capacity</th>
<th>Installed Capacity</th>
<th>Horsepower</th>
<th>Capital Cost (Million $)</th>
<th>Total Present Worth Cost (Million $)</th>
<th>Total Annualized Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sulzer-ABS</td>
<td>8,000 scfm</td>
<td>24,000 scfm</td>
<td>400 800 1,200</td>
<td>$2.00</td>
<td>$6.98</td>
<td>$469,500</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td>8,000 scfm</td>
<td>24,000 scfm</td>
<td>400 800 1,200</td>
<td>$2.90</td>
<td>$8.29</td>
<td>$557,000</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td>8,000 scfm</td>
<td>24,000 scfm</td>
<td>500 1,000 1,500</td>
<td>$3.71</td>
<td>$9.43</td>
<td>$633,500</td>
</tr>
<tr>
<td>2</td>
<td>APG-Neuros</td>
<td>12,000 scfm</td>
<td>24,000 scfm</td>
<td>600 1,200 1,200</td>
<td>$2.87</td>
<td>$8.26</td>
<td>$556,100</td>
</tr>
<tr>
<td></td>
<td>Siemens</td>
<td>12,000 scfm</td>
<td>24,000 scfm</td>
<td>550 1,100 1,100</td>
<td>$3.33</td>
<td>$9.08</td>
<td>$610,500</td>
</tr>
<tr>
<td>3</td>
<td>Sulzer-ABS (+ Multi-Stage Blower)</td>
<td>5,000 scfm (12,000 scfm)</td>
<td>22,000 scfm</td>
<td>268 (+ 600) 868</td>
<td>$1.80</td>
<td>$7.33</td>
<td>$492,900</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros (+ Multi-Stage Blower)</td>
<td>5,000 scfm (12,000 scfm)</td>
<td>22,000 scfm</td>
<td>250 (+ 600) 850</td>
<td>$2.06</td>
<td>$7.70</td>
<td>$517,500</td>
</tr>
</tbody>
</table>

Comparisons

- **Existing Turblex (1500 hp):** $11.31, $760,000

- **Compared to 1500 HP:**

Cost Ranking

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Manufacturer</th>
<th>Capital Cost</th>
<th>O&M Cost</th>
<th>Total Annualized Cost</th>
<th>Average Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sulzer-ABS</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>2</td>
<td>APG-Neuros</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>Siemens</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>3</td>
<td>Sulzer-ABS (+ Multi-Stage Blower)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros (+ Multi-Stage Blower)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Savings

- **Compared to 1500 HP:**

- **Savings of $200,000 per year on electrical:**

- **Savings of $3,655,000:**
Project Summary and Costs

– NTP issued to Danis on July 14, 2014
– Blowers came online January of 2016
– Completion of project on August 26, 2016
– Total Construction Cost of $2,768,757
Selected Technology – Magnetic Bearing Turbo Blowers

1. 1992 - Technology development and proto-types for micro-turbine, micro-generator, high pressure pump, compressor, vacuum pump.
2. First compressor delivered to Joutseno, Finland in 1996.
3. First US Installation 2004 (6) 322 HP Units In Wisconsin.
 – Ohio Installations include Akron, Dayton, Delaware, Logan County. Youngstown is under construction.
Idea Behind the Magnetic Bearing Technology

1. The rotor levitates on magnets.
 – No mechanical contact
 – No wearing parts, even during start/stop.

2. The UPS battery backup supplies power to the magnets in case supply voltage is lost.

3. Airflow controlled by the VFD.
 – Min airflow a function of site conditions and unit selection
1. "Active" indicates that the magnetic fields are produced using electromagnets and their currents are actively controlled by servo loops (position sensors).
2. Additional advantages are lubricant free operation and freedom of maintenance.
3. To avoid the need of maintenance, the AMB system has thorough self-monitoring of the unit.
4. Magnetic bearings work in either horizontal or vertical orientation.
AMB Simplified Operation

Levitated object (Rotor)
Electromagnet
Position sensor
Control law
Amplifier

bias current +
control current +
bias current +
control current -
position signal
AMB System Components

- Axial actuator
- Radial actuator
- Position sensor
- Touchdown bearing
- Rotation sensor
- Control electronics
- Cables
- User interface
 - Loading programs
 - Diagnostics
 - Troubleshooting
High Speed Permanent Magnet Motor
Impeller, Safety Bearings, and Cooling Fan
Sulzer Compressor Family

1. Compressors with induction motors
 - HST 2500: 92-134 HP / 450-2700 SCFM
 - HST 6000: 200-322 HP / 1500 -5000 SCFM

2. Compressors with permanent magnet motors
 - HST 20: 150-250 HP / 1300-4400 SCFM
 - HST 9500: 268-375 HP / 1400-6600 SCFM
 - HST 40: 402-536 HP / 3000-10400 SCFM
Consultant Initial Comparisons

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Manufacturer</th>
<th>Minimum Capacity</th>
<th>Horsepower per Blower</th>
<th>Average Power Demand (KW)</th>
<th>Annual Electrical Demand (kW-hr/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>Siemens</td>
<td>20,000 scfm</td>
<td>1,500</td>
<td>949</td>
<td>8,313,000</td>
</tr>
<tr>
<td>1</td>
<td>Sulzer-ABS</td>
<td></td>
<td>400</td>
<td>418</td>
<td>3,665,000</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td></td>
<td>400</td>
<td>452</td>
<td>3,960,000</td>
</tr>
<tr>
<td></td>
<td>APG-Neuros</td>
<td></td>
<td>500</td>
<td>471</td>
<td>4,126,000</td>
</tr>
<tr>
<td>2</td>
<td>APG-Neuros</td>
<td>14,000 scfm</td>
<td>600</td>
<td>458</td>
<td>4,009,000</td>
</tr>
<tr>
<td></td>
<td>Siemens</td>
<td></td>
<td>550</td>
<td>477</td>
<td>4,181,000</td>
</tr>
<tr>
<td>3</td>
<td>Sulzer-ABS (+ Multi-Stage Blower)</td>
<td>268 (+ 600)</td>
<td>472</td>
<td>4,132,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APG-Neuros (+Multi-Stage Blower)</td>
<td>250 (+ 600)</td>
<td>476</td>
<td>4,168,000</td>
<td></td>
</tr>
</tbody>
</table>
Defendability

Are you sure? Show me?
Projected Payback

Current Blower was at over 8,313,000 KW Annually at approx. 20,000 CFM.

New 3 blowers (70%) Total 5,098,320 KW Annually at approx. 17,500 CFM (Actual 8/01/2018)

Annual Savings 3,214,680 KW reduction (38.7%) @ $0.047 /KWH gives $151,090. Annually
2 Years Before & 2 Years After
Where is the energy savings?

1. Energy savings should be generated from:
 a) Reducing air requirements (20,000 SCFM down to 14,000 SCFM)
 b) Lower energy consumption due to higher efficiency blowers
2. Calculated savings based on KW readings is $9,400/month
Outside Factors Obscuring the Results

1. Unable to reduce air flow to 14,000 SCFM due to process control (currently 18,000 SCFM)
2. Final Clarifier Project immediately followed forcing air flow to aeration tanks with no automation or air flow metering
3. Electrical KWH of Blowers was embedded within the Monthly Electric Bill. Savings not obvious since not separately recorded. (Could have been better tracked with proper monitoring)
4. City of Dayton started purchasing energy in bulk
Excellent consulting, excellent product, but how do you defend it?

1. Foresight for future data needs to be able to defend the project.

2. SCADA Integration, Substation Monitoring and Process Automation.

3. Historical and Post Construction data.
Questions

Nick Dailey, nick.dailey@daytonohio.gov

Jim Pelton, jimpelton@peltonenv.com

Phil Bennington, phil.bennington@daytonohio.gov